

In collaboration with

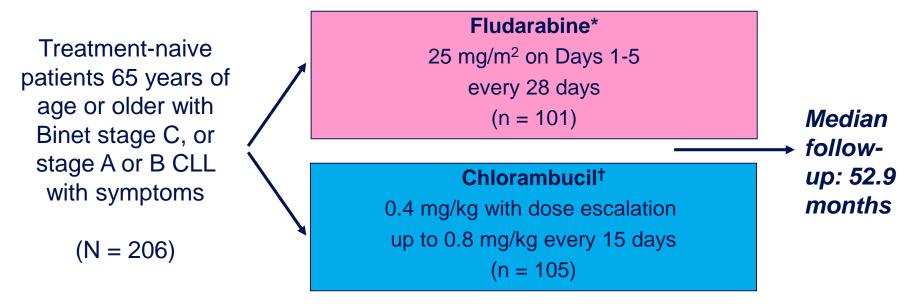
Mediterranean multidisciplinary Oncology forum (MMOF) | Hiroshima University Karmanos Cancer Institute (Wayne State University)

"The treatment of CLL in real life depending on the availability of drugs"

In collaboration with

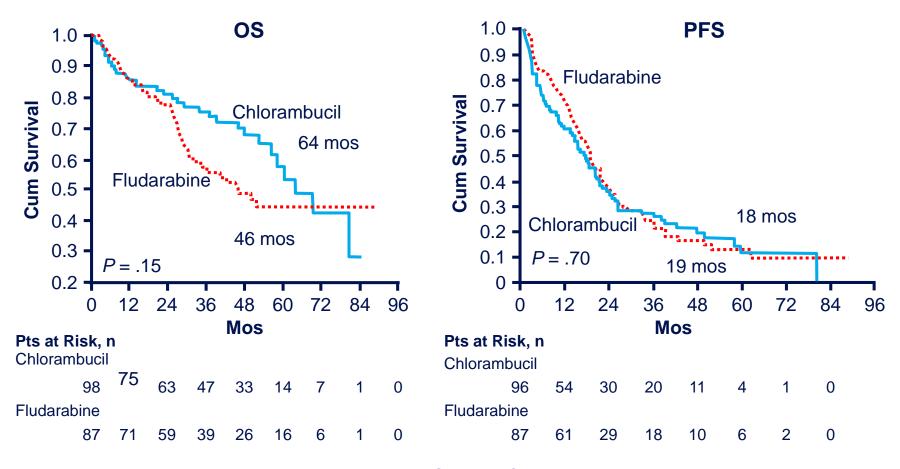
Mediterranean multidisciplinary Oncology forum (MMOF) | Hiroshima University Karmanos Cancer Institute (Wayne State University)

- Chemotherapy
 - Chlor
 - Bendamustine
 - Fluda
 - Fluda + Cyclo
- Chemoimmunotherapy
- Allo BMT
- Mechanism-based treatment



First-Line Fludarabine vs Chlorambucil in Elderly Patients With CLL

- Randomized, phase III trial (German CLL Study Group)
- Patients enrolled between 1999 and 2004

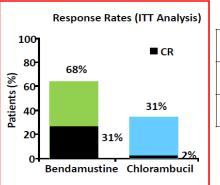

^{*6} courses planned.

[†]Administered for maximum of 12 months or until maximum response achieved.

Phase III Trial of Fludarabine vs Chlorambucil in Elderly CLL: Responses

Patients, %	Chlorambucil (n = 100)	Fludarabine (n = 93)	P Value
All patients			
OR	51	72	.003
CR	0	7	.011
CTC Grade 3/4 Adverse Event, %	Chlorambucil (n = 96)	Fludarabine (n = 87)	P Value
Any myelotoxicity	23	42	.005
Leukocytopenia	3	28	<.001
Neutropenia	12	12	1.0
Anemia	27	15	.05
AIHA	2	8	.08
Thrombocytopenia	20	15	.40
Infection	4	8	.30

Phase III Trial of Fludarabine vs Chlorambucil in Elderly CLL: OS and PFS

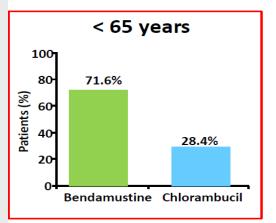


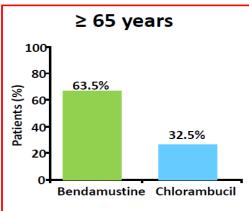
No significant difference seen in either OS or PFS between arms

Randomized study Benda vs CLB

bendamustine (100 mg/mq days 1 and 2 every 4 weeks) chlorambucil (0.8 mg/Kg days 1 and 15 every 4 weeks)

Bendamustine vs Chlorambucil: response rates

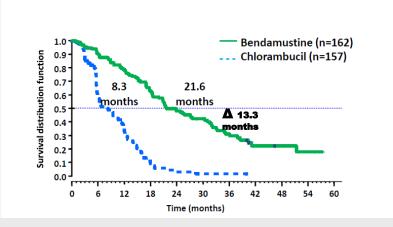



	Benda (n=162)	Chlor (n=157)	P 1,2
OR, n (%)	110 (68)	48 (31)	<.0001
CR, n (%)	50 (31)	3 (2)	<.0001

1. Knauf W et al. J Clin Oncol 2009;27:4378-

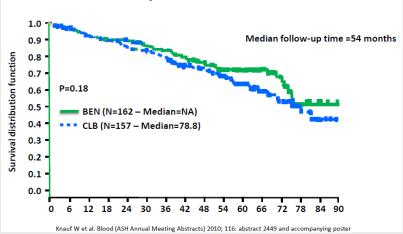
2. Knauf W et al. Blood (ASH Annual Meeting Abstracts) 2010; 116: abstract 24

Bendamustine vs Chlorambucil: response by age



FRM 1

Studio randomizzato B vs CLB



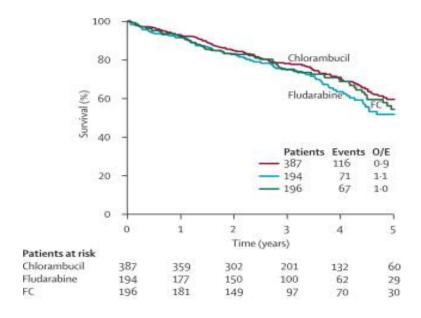
Knauf W et al. J Clin Oncol 2009;27:4378-84

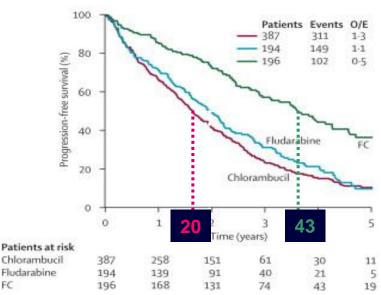
FRM 12

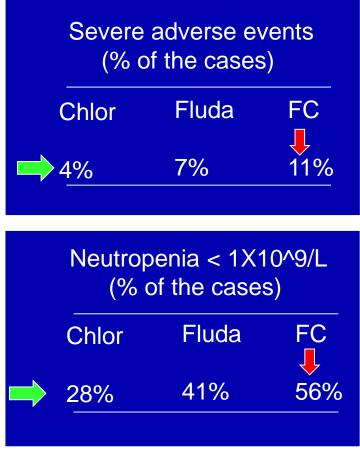
Bendamustine vs Chlorambucil: OS by treatment

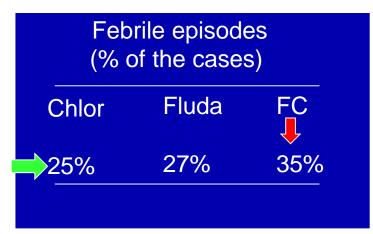
Randomized study B vs CLB

Bendamustine vs Chlorambucil: grade 3-4 toxicities


	Bendamustine	Chlorambucil
Granulocytopenia, %	23	11
Thrombocytopenia, %	12	8
Anemia, %	3	0
Infections, %	8	3
Skin, %	2.5	2
Gastrointestinal disorders, %	3	1
Tumour lysis syndrome, %	1	0


Fludarabine + Cyclophosphamide (FC) superior to Fludarabine in previously untreated CLL patients - Results of 3 randomized studies


		atovsky ancet, 2007			inn acol, 2007		horst , 2006
Regimen N	Chl 387	F 194	FC 196	F 137	FC 141	F 182	FC 180
% CR	7	15	38	5	23	7	24
% OR	72	80	94	59	74	83	94
Med PFS (mo)	20	23	43	19.2	31.6	20	48


Chlor vs F vs FC in CLL LRF CLL4 trial

Chlorambucil was given orally at 10 mg/m² per day for 7 days, up to 12 courses

In collaboration with

Mediterranean multidisciplinary Oncology forum (MMOF) | Hiroshima University Karmanos Cancer Institute (Wayne State University)

- Chemotherapy
- Chemoimmunotherapy
 - Chlor + anti CD20
 - FCR
 - BR
 - Allo BMT
- Mechanism-based treatment

Elderly CLL

Efficacy of chlorambucil + Rituximab as first line treatment

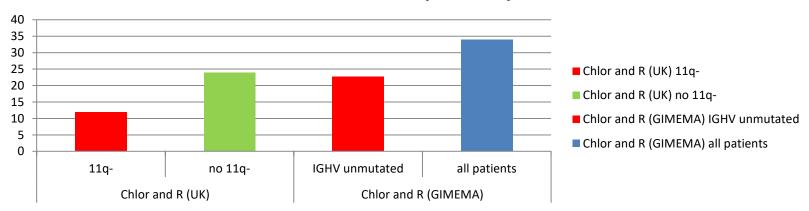
No. of	Median age	Total dose	%CR/CRi	Median PFS
patients		of Chlor		(months)
100	70	420	10	23,5
100	/0		10	23,5
		mg/sqm		
85	70	448	19	34,7
		mg/sqm		
233	73	6 mg / Kg	8,3	15,7

UK: Hillmen P, JCO, Mar 17. [Epub ahead of print] 2014

Italy: Foà R on behalf of the GIMEMA group: Am J Hematol. 2014;89: 480-6

CLL11: Goede V, on behalf of CCLLSG: N Engl J Med. 2014;370:1101-10

Elderly CLL


Safety of chlorambucil + Rituximab as first line treatment

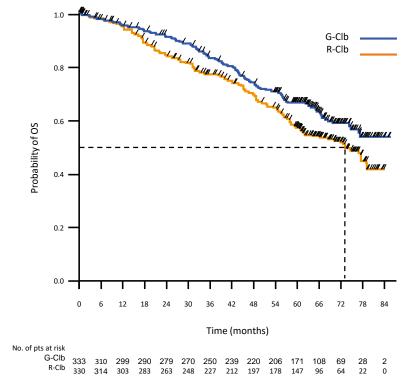
	% of pts with grade 3/4 AE		
	neutropenia	Infections	
UK	41	4	
Italy	19,6	1	
CLL11	25	8	

Adverse prognostic factors with chlorambucil and rituximab (phase II studies)

Median PFS (elderly/unfit)

median PFS (months)

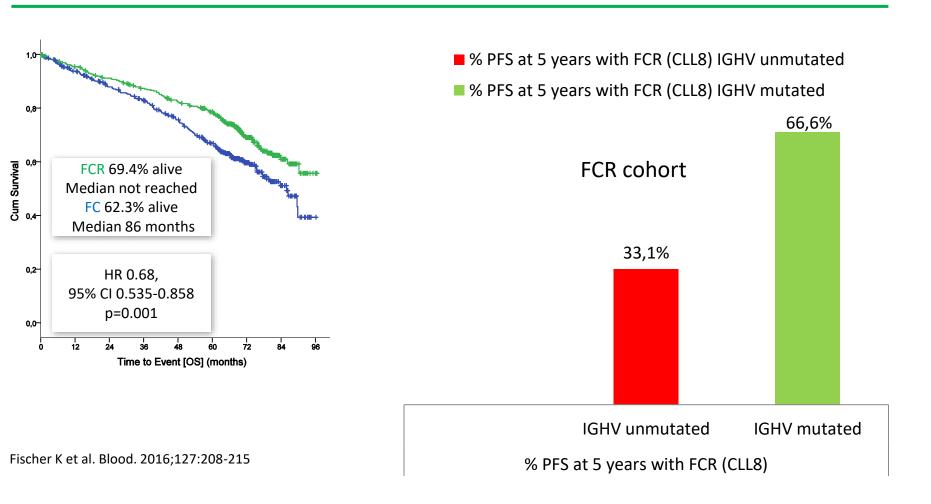
- 1. Hillmen P et al, J Clin Oncol. 2014 Apr 20;32(12):1236-41
- 2. Foà R et al. Am J Hematol. 2014 May;89(5):480-6

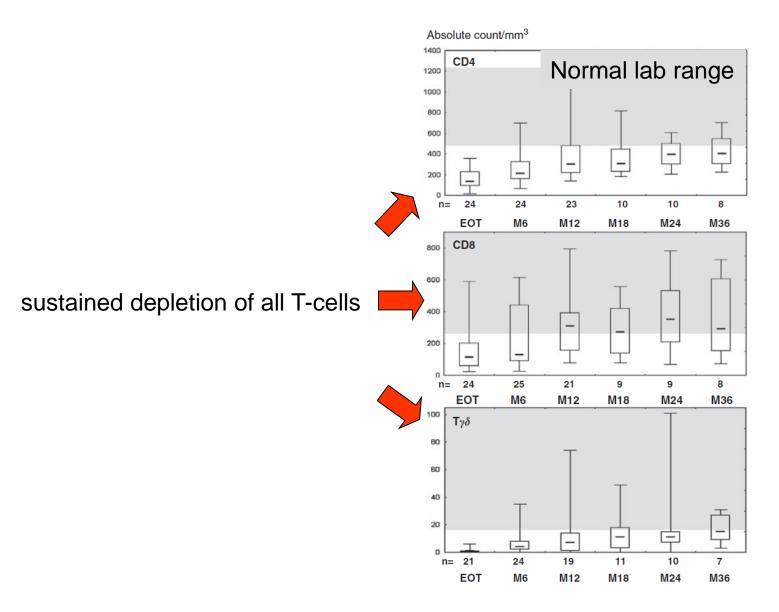

Overall survival benefit of obinutuzumab over rituximab when combined with chlorambucil in patients with chronic lymphocytic leukemia and comorbidities: final survival analysis of the CLL11 study

Valentin Goede,^{1,2} Kirsten Fischer,¹ Martin JS Dyer,³ Michael J Eckart,⁴ Lothar Müller,⁵ Lukas Smolej,⁶ Maria Chiara Di Bernardo,⁷ Andrea Knapp,⁸ Tina Nielsen.⁸ Michael Hallek^{1,9}

¹German CLL Study Group, Department I of Internal Medicine, Center of Integrated Oncology, University Hospital, Cologne, Germany; ²Oncogeriatric Unit, Department of Geriatric Medicine, St Marien Hospital, Cologne, Germany; ³The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK; ⁴Oncology Practice, Erlangen, Germany; ⁵Oncology Practice, Leer, Germany; ⁶Charles University Faculty of Medicine, University Hospital, Hradec Králové, Czech Republic; ⁷On assignment to F. Hoffmann-La Roche Ltd, Basel, Switzerland; ⁸E. Hoffmann-La Roche Ltd, Basel, Switzerland; ⁹Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany

Goede et al; EHA 2018 abs \$151 https://learningcenter.ehaweb.org/eha/2018/stockholm/215923/


OS: G-Clb vs R-Clb

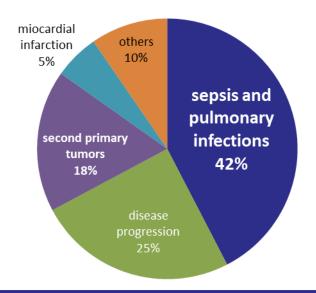

	G-Clb n=333	R-Clb n=330
Patients with events, n (%)	121 (36.3)	147 (44.5)
5-year OS, % (95% CI)	66 (61–7 2)	57 (51–6 2)
Median OS, months	NR	73.1
HR (95% CI), p- value	0.76 (0.60–0.97), p=0.0245	

Goede et al; EHA 2018 abs S151 https://learningcenter.ehaweb.org/eha/2018/stockholm/215923/

Long term follow-up (median 5,9 y) of the GCLLSG – CLL8 study: PFS and unmutated IGHV

Immune recovery after fludarabine-cyclophosphamide-rituximab treatment in CLL

Ysebaert L et al, Leukemia 2010 24: 1310-1316

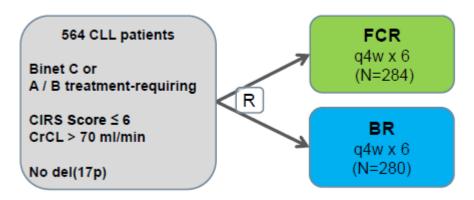

Late cytopenia and infections after FCR

months after the completion of therapy	Grade 2-4 cytopenia MDACC* (% pts)	Grade 3-4 neutropenia CLL8 (%pts)	Grade 3-4 neutropenia CLL8 (%pts)	Late infection MDACC (%pts)
	FCR	FCR	FC	
3	35			
6	24			
9-12	12	16,6	8,8	
12 24				10% 4%

^{*} Associated with age

Causes of death after FCR in the CLL8 trial

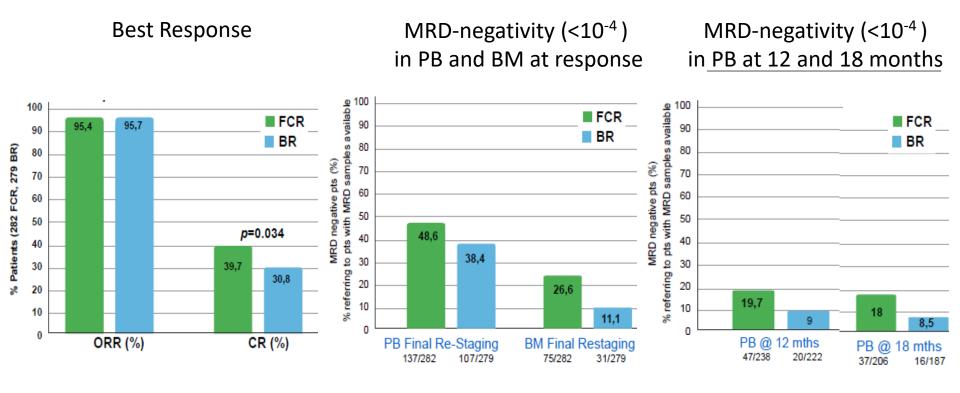
FCR arm (n.125 events / 408 patients; 5,9 yrs median f.u.)

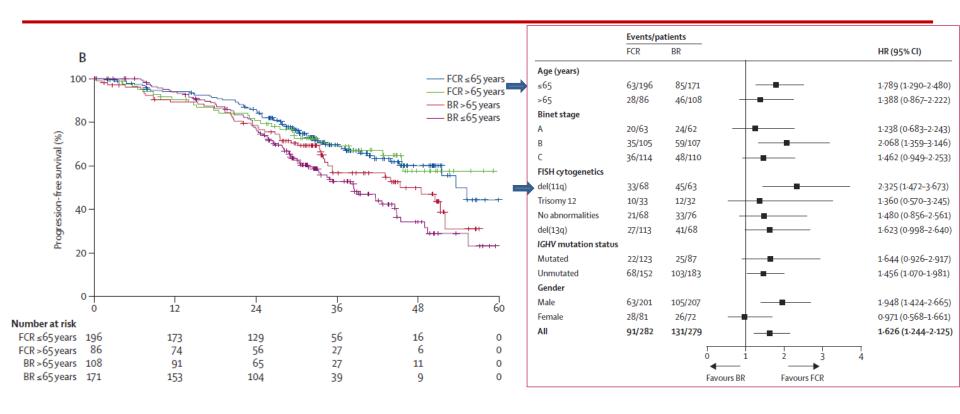


Median time to onset (months) after last dose of stud	dy treatment
sepsis and pulmonary infections	46
second primary tumors	27

FCR vs BR in Previously Untreated and Physically Fit Patients with CLL: Final Analysis of the GCLLSG- CLL10 Study (17p- excluded per protocol)

- Study hypotheses
- 1. BR non-inferior to FCR in terms of PFS
- 2. BR potentially better tolerability compared to FCR
- □ Assumptions*:
- □ PFS @ 2 yearss
 - □ under FCR: 75%
 - □ under BR: > 67,5% for non-inferiority (7.5% difference or less)
 - \blacksquare \rightarrow Complete 95% CI of the HR [λ BR/FCR] has to be < 1.388


Study Design


Median observation time for all patients: 37,1 (0-59,9) m

Baseline patient characteristics	FCR n=284	BR n=280	p value
Med. age	61	62,1	0,131
Age > 65	30,5%	38,7%	0,042
Age ≥ 70	14%	22%	0.020
Male	71,3%	74,2%	0,45
Median time since diagnosis (m)	21,6	24,6	0,846
ECOG PS 0	64,1%	64,1%	0,194
Med. CIRS	2	2	0,489
Binet A	22,3%	22,2%	
Binet B	37,3%	38,4%	0,846
Binet C	40,4%	39,4%	
IGHV unmutated	55,3%	67,8%	0,003
11q deletion	24,1%	22,6%	0,691
Trisomy 12	12,4%	12,2%	1
13q deletion	55%	52,7%	0,612
s-TK (U/I) > 10.0	72,8%	72,6%	1
s-β2m (mg/l) > 3.5	30,9%	38,1%	0,086

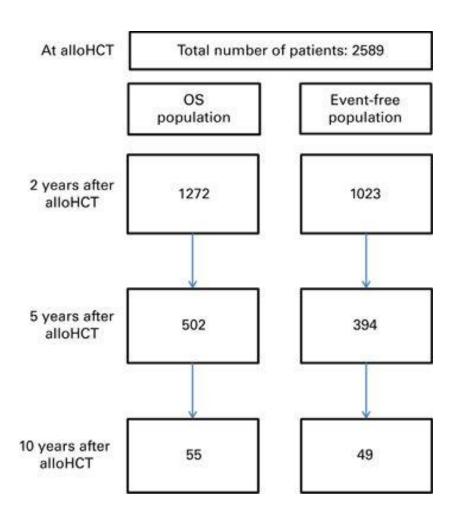
FCR vs BR in Previously Untreated and Physically Fit Patients with CLL: Final Analysis of the GCLLSG- CLL10 Study

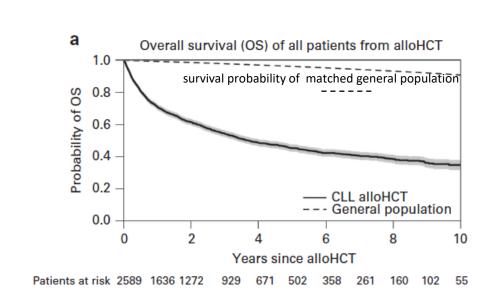
PFS according to risk groups in the CLL10 study:

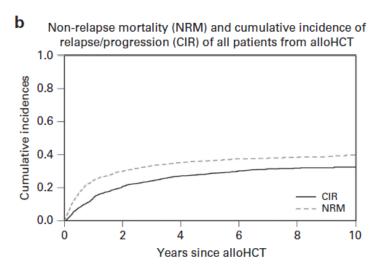
- FCR better than BR in the total population
- FCR better than BR in patients with IGHV unmutated and in patients with 11q-
- NO difference in the patients >65 years (post-hoc analysis)

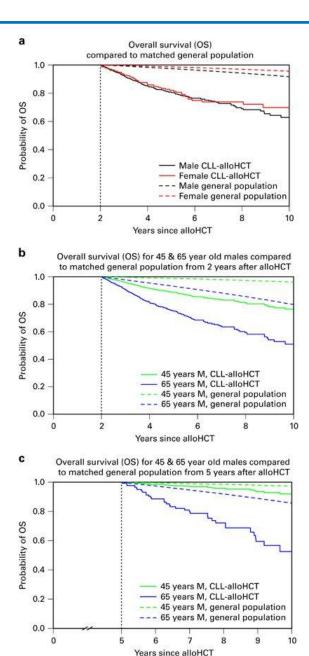
In collaboration with

Mediterranean multidisciplinary Oncology forum (MMOF) | Hiroshima University Karmanos Cancer Institute (Wayne State University)

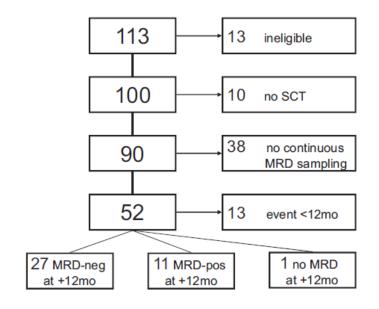

- Chemotherapy
- Chemoimmunotherapy
 - Chlor + anti CD20
 - FCR
 - BR
- Allo BMT
- Mechanism-based treatment

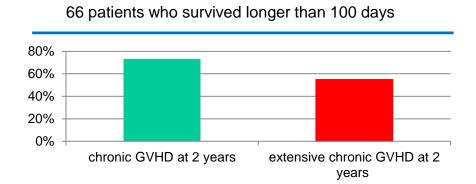





Long-term survival of patients with CLL after allogeneic transplantation: a report from the European Society for Blood and Marrow Transplantation

Long-term survival after allo-HCT in CLL: The prospect of long-term disease-free survival remains an argument to consider allo-HCT for young patients with high-risk CLL





van Gelder M et al. Bone Marrow Transplantation (2017) 52, 372–380

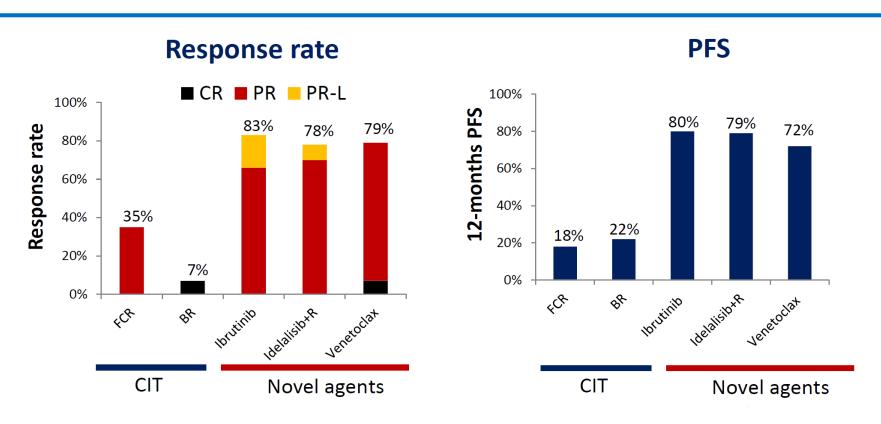
Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial

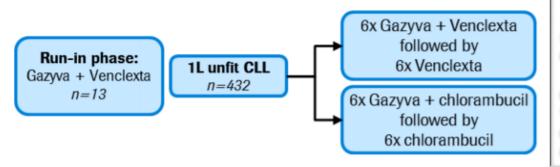
Chronic and extensive GVDH

Dreger P et al, Blood. 2010;116:2438-2447

In collaboration with

Mediterranean multidisciplinary Oncology forum (MMOF) | Hiroshima University Karmanos Cancer Institute (Wayne State University)


- Chemotherapy
- Chemoimmunotherapy
- Allo BMT
- Mechanism-based treatment
- ibrutinib
 - Idelalisib and rituxumab
 - venetoclax+/-Rituximab



CIT versus Novel Agents in TP53 disrupted CLL

Final Results of the Run-in Phase from the **CLL14 Study** of Venetoclax and Obinutuzumab in Patients With TN CLL With Coexisting Medical Conditions: Study Design and Patients

CLL14 study design

Key eligibility criteria

- TN CLL
- CIRS >6 and/or CrCl <70 mL/min

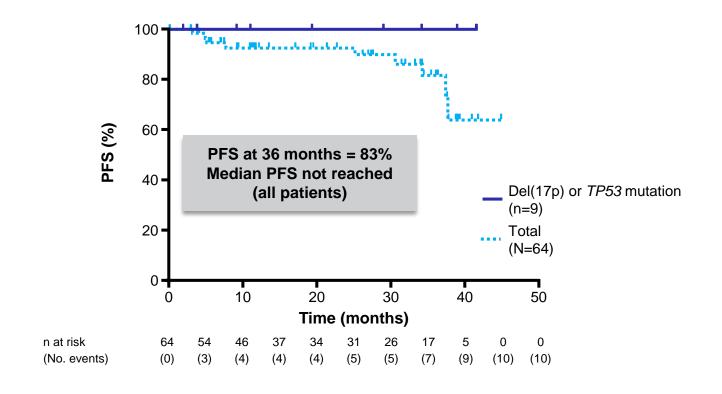
Obinutuzumab

- cycle 1: 100 mg day 1, 900 mg day 2, 1000 mg days 8 and 15
- cycles 2-6: 1000 mg day 1

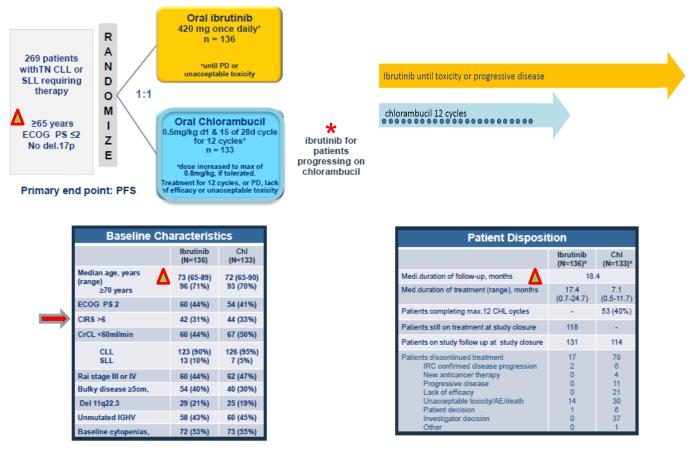
Venetoclax

- From day 22 of cycle 1- ramp-up 20 mg to 400 mg
- followed by 6 cycles single-agent venetoclax

Baseline Charac	(N=13)	
Median age, ye	ars (range)	75 (59-88)
≥70 years, n	(%)	11 (85)
CIRS score	>6, n (%)	10 (77)
CrCl ml/min <7	0, n (%)	10 (77)
Cytogenetic	Del(17p)	2 (25)
subgroups	Del(11q)	2 (25)
TP53 deleted and/or mutated (n=8)		2 (25)
Unmutated IGHV (n=7)		6 (86)
% TLS risk intermediate/ high		62/38

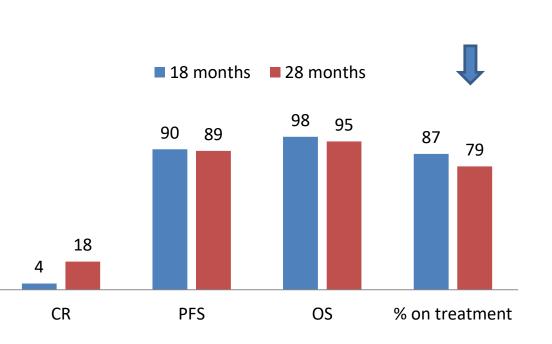

Response rates	N (100)
ORR	→ 12 (100)
CR	7 (58)
PR	5 (42)
MRD neg	→ 10 (91)

AEs in > 15% of patients	Any Grade	Grade 3/4
Any AE	12 (100)	10 (83)
Neutropenia 💳	> 8 (67)	7 (58)
Febrile neutropenia	3 (25)	3 (25)
Infections (pooled)	8 (67)	2 (17)
Syncope	2 (17)	2 (17)
Thrombocytopenia	2 (17)	2 (17)
Laboratory TLS (No clinical TLS)	2 (17)	2 (17)

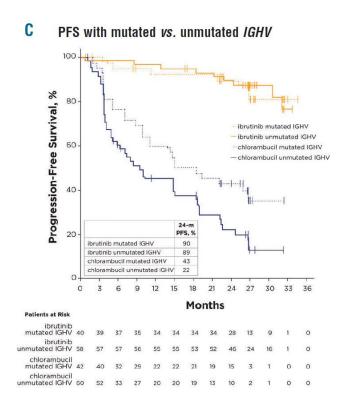

Fischer et al. ASH 2016. abstr. #2054.

Thanks to dr. Francesca Mauro; University "La Sapienza" Rome

Idelalisib + R provided a long PFS in front-line CLL patients with del(17p)/TP53 mutation

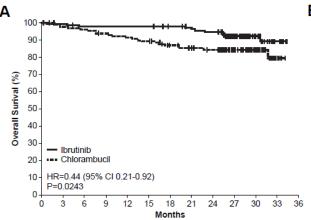


Phase III RESONATE-2: Frontline Ibrutinib vs Chlorambucil in Elderly Patients With CLL

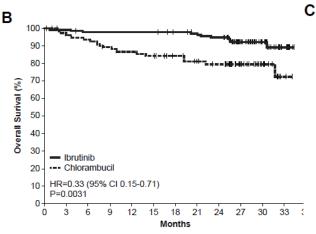


Burger et al., NEJM 2015; Tedeschi et al., ASH 2015

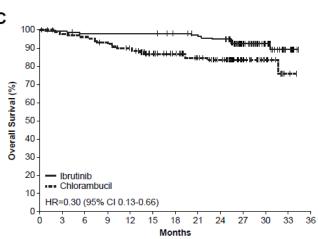
Resonate-2: Efficacy and tolerability of ibrutinib is maintanied at 28 months in treatment naive CLL, irrespective of IGHV mutational status



Barr P, ASH 2016 abs# 234 Burger NEJM, 2015 Barr et al. Haematologica 2018;103:1502-1510

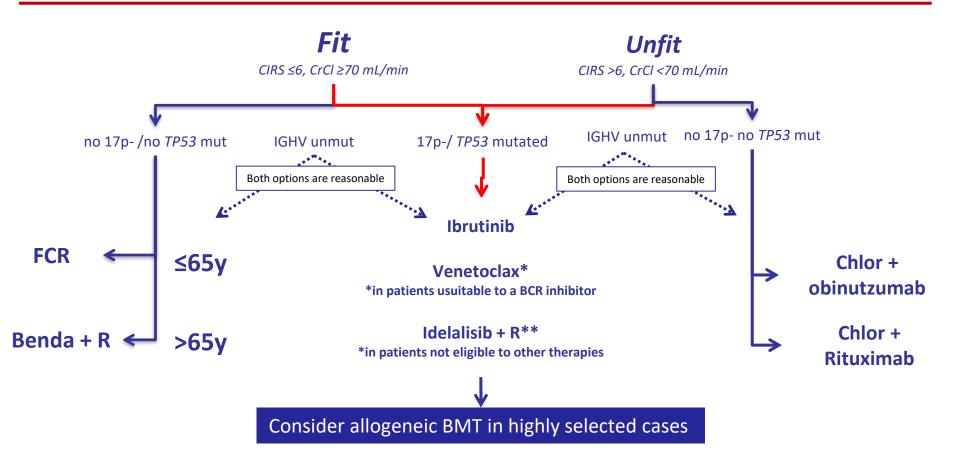


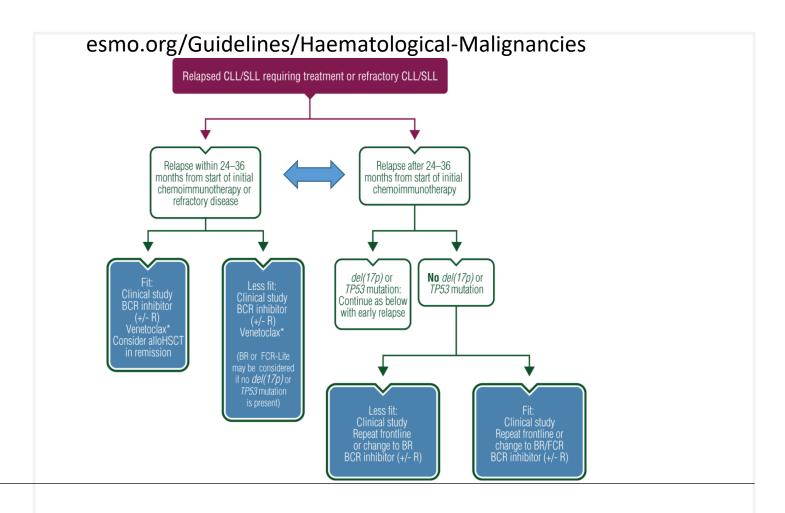
Survival adjusting for crossover: phase 3 study of ibrutinib vs chlorambucil in older patients with untreated CLL: median f.u. 28 months



excluding patients who crossed over to ibrutinib

Kaplan-Meier curves of overall survival

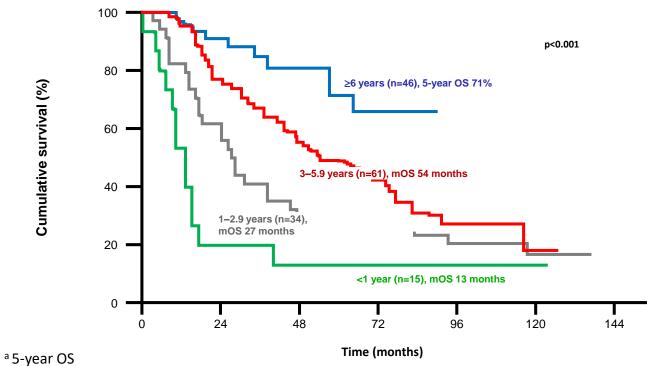

rank-preserving structural failure time method



Characterization of select AEs of clinical interest in ibrutinib-treated patients observed at any time during follow up

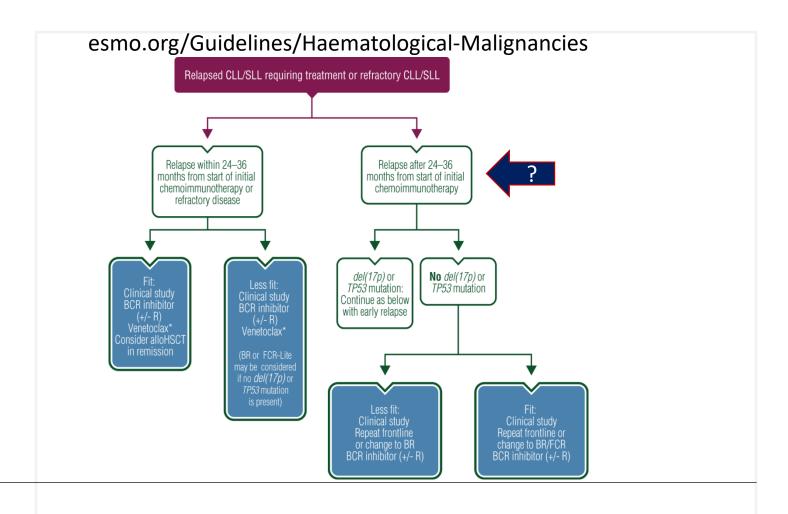
AE	lbrutinib-treated patients n=135 n (%)				Resolution, Median time to first event, days				ent,	Median time from onset to resolution/improvement, days						
Grade	Any	2	3	4	5	Complete	Partial	Any	2	3	4	5	Any	2	3	4
Diarrhea	61 (45)	16 (12)	5 (4)	0	0	58 (95)	0	26	131	219	NA	NA	6	3	6.5	NA
Visual disturbances ^b	30 (22)	6 (4)	0	0	0	17 (57)	0	100	201	NA	NA	NA	37.5	74.5	NA	NA
Hypertension ^c	27 (20)	13 (10)	7 (5)	0	0	12 (44)	1 (4)	187	187	109.5	NA	NA	14	36	9	NA
Arthralgia	27 (20)	9 (7)	3(2)	0	0	21 (78)	1 (4)	135	55	135	NA	NA	22	22	15	NA
Atrial fibrillation	14 (10)	7 (5)	6 (4)	0	0	8 (57)	1 (7)	249.5	85	773.5	NA	NA	3	2	7	NA
Major hemorrhage	9 (7)	1	7 (5)	1(1)	0	9 (100)	0	310	155	446	254	NA	13.5	14.0	11.0	45.0
		(<1)														
Infections (grade ≥3)	31 (23)	NA	28 (21)	4(3)	2(1)	28 (90)	0	138	NA	119	367.5	422	9	NA	9	16

Principal options for first line treatment of CLL


From: Appendix 4: Chronic lymphocytic leukaemia: eUpdate published online 27 June 2017 (www.esmo.org/Guidelines/Haematological-Malignancies) Ann Oncol. 2017;28(suppl_4):iv149-iv152. doi:10.1093/annonc/mdx242

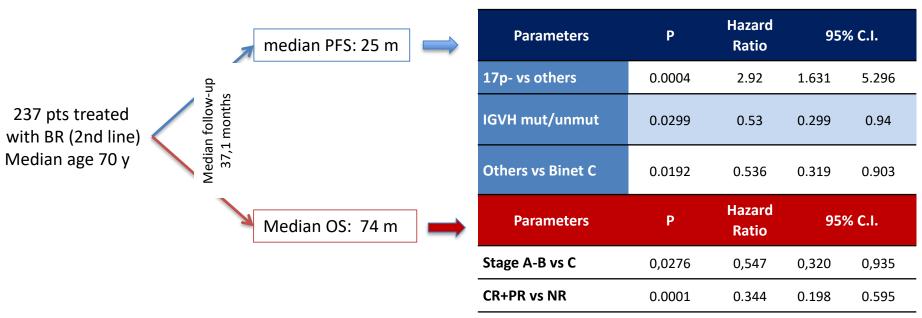
Ann Oncol | © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Survival is short in patients who relapse early


32% of patients relapse ≤ 3 years after FCR, median OS 2.5 years

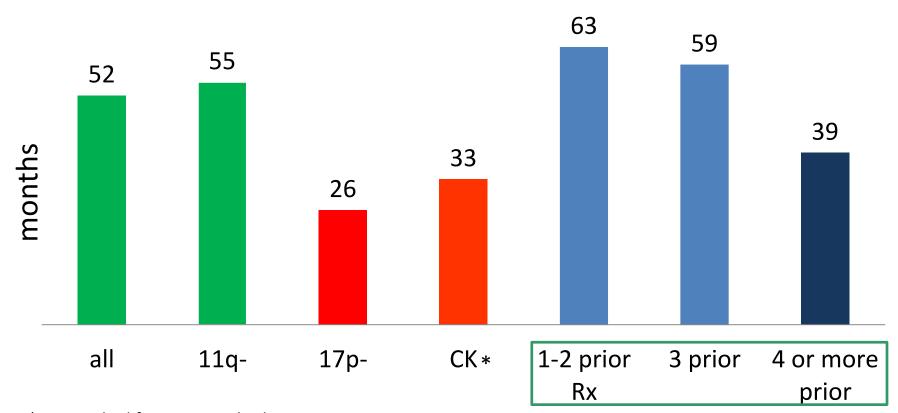
mOS: median OS; OS: overall survival

Tam CS, et al. Blood 2014 124:3059-3064.


From: Appendix 4: Chronic lymphocytic leukaemia: eUpdate published online 27 June 2017 (www.esmo.org/Guidelines/Haematological-Malignancies) Ann Oncol. 2017;28(suppl_4):iv149-iv152. doi:10.1093/annonc/mdx242

Ann Oncol | © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

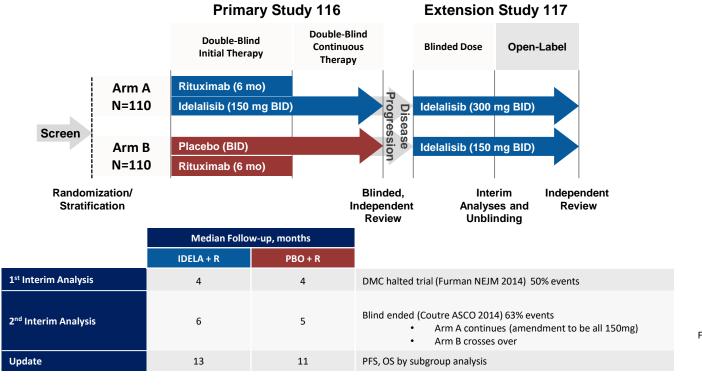
Is there a role for chemoimmunotherapy as first salvage treatment in CLL? Efficacy of Bendamustine and rituximab in a real-world patient population


Efficacy of bendamustine and rituximab as first salvage treatment in CLL and indirect comparison with ibrutinib: a GIMEMA, ERIC and UK CLL FORUM study

Multivariable analysis

Cuneo A et a. Haematologica. 2018 Jul;103(7):1209-1217

Median PFS in 101 rel/ref CLL under ibrutinib (5 yr follow-up) genetics and previous treatment



^{*}Not reached for non complex karyotype O'Brien ASH 2016 abs#233

Idelalisib and Rituximab in rel/ref

Population:

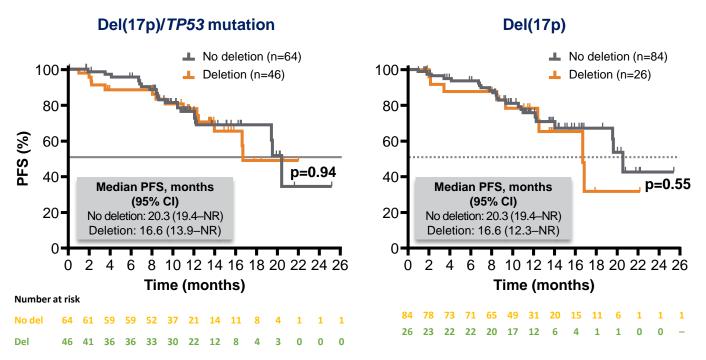
Relapsed CLL warranting treatment (iwCLL); progression < 24 mo since last treatment

Furman R et al *NEJM* 2014;370:997-1007

Patients included in Study 116 were elderly, had a poor performance status and cytopenias

	Typical relapsed CLL patient	Ibrutinib RESONATE population ³	Zydelig + R Study 116 population ⁶	Ofatumumab licensing study ⁴ (FA-ref/BF-ref)
Trial design	Registry	Open-label randomised	Double-blind placebo controlled	Non-randomised Phase II
Median age (years)	72.5 ^{1a}	67	71	64/62
ECOG PS, 1-3 (%)	N/A	59	87	65
ECOG PS, 2-3 (%)	23.2 ^{2b}	0	28	N/A
del(17p) and/or <i>TP53</i> mutation (%)	42 ⁵	33	43	29/18
Blood count criteria	N/A	Platelets ≥30 x 10 ⁹ /L Neutrophils ≥0.75 x 10 ⁹ /L	No restrictions 35% Grade 3 or 4 cytopenias	No blood counts or transfusion restrictions

^a German Tumour Registry Lymphatic Neoplasms (patients recruited between 2009 and 2013) at start of second-line therapy (n=186)


b Ipsos Healthcare Global Oncology Monitor real world evaluation of CLL patient from Germany, France, UK, Spain and Italy (n=5163)

^c Equivalent to Karnofsky score 0–70

ECOG: Eastern Cooperative Oncology Group

Del(17p) or *TP53* prognostic factors do not impact on the efficacy of Zydelig + R

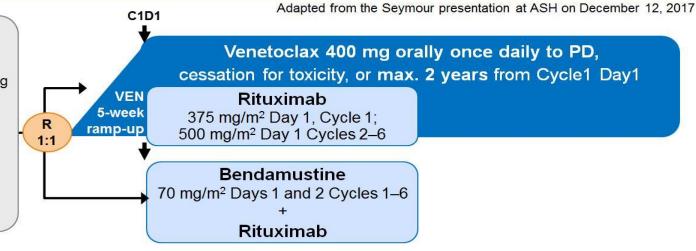
Second interim analysis: median PFS 19,4 months in the idela + R arm

Sharman JP, et al. ASH 2014 (Abstract 330; oral presentation).

Impact of adding Rituximab to Venetoclax in RR CLL: a Cross-Study Multivariable Analysis

High ORR were achieved with Venetoclax combined with rituximab (86%), or Venetoclax monotherapy (79%)
 CR was higher with Venetoclax combined with rituximab (51%) than Venetoclax monotherapy (20%)

[&]quot;Incomplete data for M13-365 (VEN + R) was due to one death due to TLS. 5 patients had incomplete data for M12-175 (VEN), which were due to TLS (n=2, 1 fatal), thrombocytopenia (1), viral pneumonia (1), and management of diabetes mellitus (1).


MURANO Study Design

Relapsed/refractory CLL (N=389)

- ≥18 years of age
- Prior 1–3 lines of therapy, including
 ≥1 chemo-containing regimen
- Prior bendamustine only if DoR
 ≥24 months

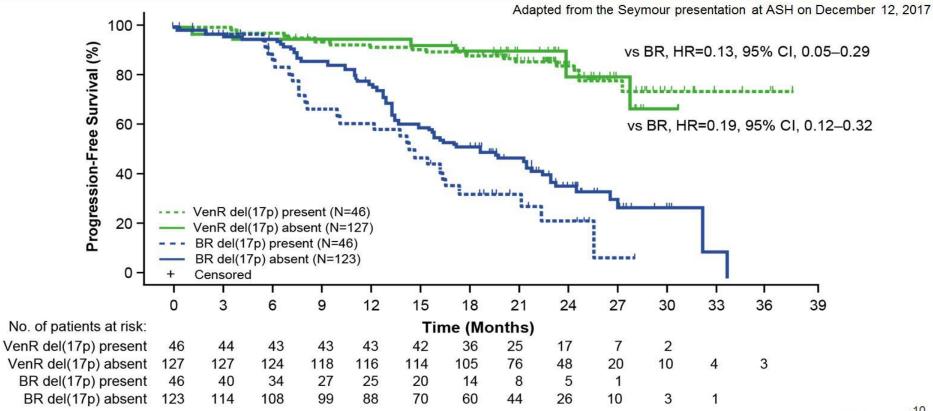
Stratified by:

- Del(17p) by local labs
- · Responsiveness to prior therapy*
- Geographic region

Primary Endpoint	INV-assessed PFS		
Major Secondary	 IRC-CR ⇒ IRC-ORR ⇒ OS (hierarchical testing) 		
Endpoints	IRC-assessed PFS and MRD-negativity		
Key Safety Endpoints	Overall safety profile, focusing on serious adverse events and Grade ≥3 adverse events		
Interim Analysis	Approximately 140 INV-assessed PFS events (75% of total information)		

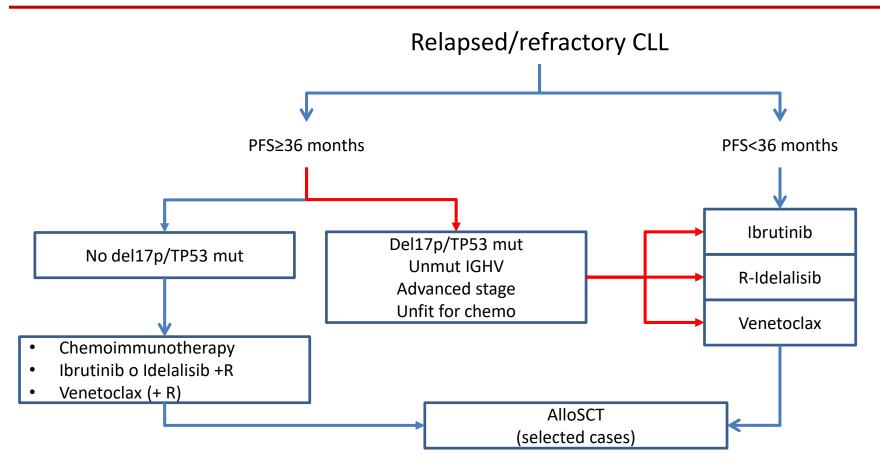
NCT02005471

*High-risk CLL – any of following features: del(17p) or no response to front-line chemotherapy-containing regimen or relapsed ≤12 months after chemotherapy or within ≤24 months after chemoimmunotherapy.


Il materiale è coperto dalle leggi del Copyright. Sono ad esclusivo uso personale e non è permessa alcuna riproduzione o distribuzione. WARNING: uso off-label (indicazione terapeutica non autorizzata da RCP)

High Peripheral Blood MRD Negativity Rate Maintained Over Time for VenR vs. BR

Il materiale è coperto dalle leggi del Copyright. Sono ad esclusivo uso personale e non è permessa alcuna riproduzione o distribuzione. WARNING: uso off-label (indicazione terapeutica non autorizzata da RCP)


Investigator-assessed PFS Superior for VenR vs. BR Among Patients With and Without del(17p)

As of 8 May 2017 10

Il materiale è coperto dalle leggi del Copyright. Sono ad esclusivo uso personale e non è permessa alcuna riproduzione o distribuzione. WARNING: uso off-label (indicazione terapeutica non autorizzata da RCP)

Principal options for relapsed/refractory CLL

